
The method presented, when applied with care, should be a valuable 
tool in drug absorption investigations. It seems to have some distinct ad- 
vantages over the method proposed by Cutler (6). The simulation data 
generated by Cutler do not differentiate between the two approaches. 
However, these data represent rather ideal, somewhat unrealistic cases. 
More realistic tests might result in a definite distinction of the methods. 
The relative accuracy of the two approaches in practice is closely related 
to the issue of whether the impulse response data (ie., the intravenous 
bolus data) are best approximated by a polynomial or a polyexponential 
expression. I t  seems quite evident that the latter is the case, so the present 
method should be generally more accurate. Although this method seems 
promising, i t  appears from previous theoretical considerations (4) that 
the other deconvolution method presented by the author (5) is superior. 
However, the new method has the advantage that the rate and the 
amount (cumulative) of input are summarized in a simple polynomial 
form (Tables V and VI). 
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Abstract 0 A novel approach to bioavailability testing is presented. The 
approach is model independent because it does not assume a specific 
pharmacokinetic model and does not use absorption, distribution, or 
elimination rate constants or a volume term. The method, which requires 
intravenous administration, is compared to classical bioavailability 
evaluation methods. Evaluation of drug input is based on the same as- 
sumptions required for using the area under the curve. No extrapolation 
beyond the last data point is required. Two statistics are derived that 
enable a comparison of the rate and the cumulative amount of input of 
two inputs for various times. A differential confidence profile is calculated 
that allows a more detailed and intrinsic bioavailability comparison than 
previous methods. The approach is demonstrated on simulated data 
containing random noise and shows satisfactory performance. 

Keyphrases 0 Bioavailability-testing, drug input, least-squares de- 
convolution technique 0 Deconvolution-least-squares technique, 
bioavailability testing, drug input 0 Drug availability-testing, least- 
squares deconvolution technique 

The quality of a drug product as a drug delivery system 
is determined by the rate and extent of delivery of the ac- 
tive form to the biological environment responsible for the 
pharmacological effect. In most cases, this environment 
is neither known nor may be sampled for the drug. How- 
ever, a close relationship usually exists between the drug 
concentration in a sampled environment (e.g., blood) and 
its pharmacological response. Therefore, this environment 
may be a useful indicator of the drug input into the re- 
sponse environment. 

Drug delivery usually is characterized in bioavailability 
terms with the blood as the sampleable environment. 
Bioavailability commonly is defined by the rate and the 
extent of drug input into the systemic circulation (1). 
Bioavailability comparisons usually are based on three 

parameters from a single-dose blood level curve: ( a )  the 
area under the curve, AUC (extrapolated); ( b )  the time of 
the peak concentration, t,,,; and ( c )  the peak concentra- 
tion, C,,, (2). 

These parameters are associated conceptually with the 
extent (AUC) and the rate (tm,, and Cmax) of input. This 
association is related to linear pharmacokinetic assump- 
tions. For example, AUC is a proper measure of the total 
input only if the response (concentration) is linear with 
respect to the input (3, 4). If the system is not linear, a 
larger AUC does not guarantee greater input. Comparisons 
of the drug input on the basis of A UC may be inaccurate 
for several reasons: 

1. The tail area must be estimated by extrapolation. 
Consequently, this area can be determined only by a 
model-dependent approach that assumes a certain func- 
tional form for the tail or the total curve. 

2. The tail area frequently is estimated from the last 
observations (e.g. ,  log-linear extrapolation), based on the 
assumption that these points predict the behavior in the 
tail. The tail area usually is determined poorly in this way 
due to low information density of the terminal set of points. 
This problem is complicated further by constraints in time 
and the number of samples when dealing with human 
subjects. The experimenter must decide whether more 
samples should be taken in the terminal phase, where little 
or no input takes place, to predict the tail area better or 
whether these samples would be more valuable in the input 
phase where the real information about the input is present 
and where C,,, and tmax are to be estimated. 

3. The problem is complicated by the fact that the tail 
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area is determined by an asymptotic-type infinite ex- 
trapolation that is more complex than an intercept-type 
extrapolation. 

A new approach to bioavailability testing is presented 
that enables a more detailed comparison of the rate and 
the extent of drug input than conventional methods. The 
method does not use AUC and does not require extrapo- 
lation beyond the last data point. The approach is model 
independent in the classical linear pharmacokinetic sense 
because it does not assume a specific pharmacokinetic 
model and does not use absorption, distribution, or elim- 
ination rate constants or a volume term. This method of 
evaluating drug input is based on the same assumptions 
as those required for using AUC as a proper measure of the 
drug input. These assumptions are: (a )  the input evaluated 
is a noninteracting primary input, and ( b )  there is a 
time-invariant linearity between the response (concen- 
tration) measured in the sampled environment (the blood) 
and the input (4). These assumptions can be tested ex- 
perimentally as discussed previously (4). Their violation 
invalidates the classical linear approaches to bioavailability 
testing (5) under the current bioavailability definition (1, 
6). 

THEORY 

It was shown (4) that if the input rate into a linear response environ- 

(Eq. 1) 

ment is given in polynomial form by': 
N 

1-1 
f ( t )  = ,x Pit'--' 

and the unit impulse response (the characteristic response) of the envi- 
ronment is given by: 

then the response to j ( t )  is: 

(Eq. 3) 

which is linear with respect to the unknown parameters 81, Pz, . . . , PN, 
and: 

Without loss of generality, two brands or drug delivery systems may be 
compared by assuming the blood to be the response environment, the 
responsetobe thedrugconcentration,c(t), andc,(t,)tobetheresponse 
measured at the time t,,, i = 1,2,. . . , M,, for the mth drug product ( m  
= 1,2). To facilitate the statistical analysis, the measured responses can 
be written in the form: 

N m  

]=I 
ymr = X Pmlxm,, + ern1 i = L 2 , .  . ., M m  (Eq. 5) 

m = 1,2 
where: 

~ m r l  = $rn j ( tmi )  i = 1929.. . , M m  (Eq. 6) 
j =  1,2,  . . . ,  N ,  
m = 1 , 2  

and: 
ym, = c ( t , , )  t = 1 , 2 , .  . . , M, 

m = 1 ,2  

Equations 1 and 4 may be written similarly: 

(Eq. 7) 

N 

1 = l  
j m ( t )  = 2 Pmltl-l  m = 1 ,2  (Eq. 8) 

1 Note that the notational expressions for the input rate (Q. l), the impulse re- 
sponse (&. 2), and the input response (%. 3) were changed from previous notatione 
(4) to facilitate the present statistical analysis. 

It is of interest in bioavailability studies to test the significance of 
differences in the rate andlor extent of drug input between drug products. 
This is equivalent to testing the null hypothesis: 

Ho: pilto = pzlto (Eq. 10) 

Hi: pilto # pzlto (Eq. 11) 

r m l t o = j m ( t o ) =  $'~Prniti-' m = 1 , 2  (Eq. 12) 

against: 

where: 
N 

1 = 1  

for various values of t  = to. 
In matrix-vector notation, Eq. 5 is: 

ym = Xm&, + t,,, m = 1 ,2  (Eq. 13) 

The statistics to be derived for testing Ho will be based on a normality 
assumption about the errors; i.e., ern is a random vector distributed N ( 0 ,  
~$11, where I is the identity matrix and a$ is unknown. The unknown 
N, X 1 parameter vector, B,, is estimated by a multiple linear regression 
technique (4). It is assumed that the observed data are sufficient to ensure 
that the rank of the M m  X N, matrix, X,, is N ,  5 M,. 

For this statistical model the least-squares estimates, denoted by -, 
are given by: 

Bm = v,x',Y, m = 1 ,2  (Eq. 14) 

bm = e',e,l(M, - N,) m = 1,2 (Eq. 15) 

V, = (XAX,,,)-I m = I,  2 (Eq. 16) 

em = y, - x,B, m = 1,2 (Eq. 17) 

are best linear unbiased estimates (BLUE) of 0, and u$. They are suf- 
ficient, efficient, complete, and consistent estimators. Furthermore, Bm 
and b, are stochastically independent and Bm is distributed N(&, 
aiV,). Consequently, the least-squares estimate of the input rate a t  t 
= to is the best linear unbiased estimate and is distributed 

a n d  

where: 

and: 

f r n ( t0 )  = TABm -N(pmIto, akT),VmTm) m = 1,2 (Eq. 18) 

where: 

T',,, = (1, to ,  ti,. . . , tfm-9 m = 1 ,2  (Eq. 19) 
Since [ f l ( t o )  - pllto] and V z ( t 0 )  - j i z l  to] are stochastically indepen- 

dent, the random variable Q1 given by: 

is standard and normally distributed. Furthermore, (M, - N,)b;/a: 
is X.z-distributed with (M, - N,) degrees of freedom. Thus, the random 
variable QZ given by: 

(Eq. 21) 

is X2-distributed with (MI - N1) + (Mz - N z )  degrees of freedom because 
(MI - Nl)d: /a:  and (M2 - N2)df /a i  are stochastically independent. It 
can be shown that the standard normal random variable Q1 and the 
X2-distributed random variable Q 2  are stochastically independent. 
Consequently, by definition, the random variable T = Qi/[QZ/(M1 - N1 
+ M2 - N2)]1/2 is t-distributed with (MI - N 1 +  MI - N2) degrees of 
freedom. If the two population variances are equal, u: = a:, then T be- 
comes independent of u2, so that the Ho-hypothesis can be tested by a 
t -test: 
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Table I-Origin of the Simulated Data  Used 

Input Rate 
Unit Impulse Response f ( t )  = 

Data aleA1f + apex2' kKe-k f  
Set a1 a2 XI x z  K k  

1 1 I - 4  -1 Unit impulse 
2 1.727 7.523 -16.30 -2.134 Unit impulse 
3 1 I -4  - 3 Unit impulse 
4 1 1 -4 -1 3.0 1.5 
5 1.727 7.523 -16.30 -2.134 1.0 1.0 
6 1 1 -4 -3 3.0 1.5 

with a critical region ( H o  rejection region) (TI > t ( d 2 ,  M I  - N1 + Mz 
- Nz) for a type 1 error probability (Y. 

The equality of the population variances can be tested according to 
an F-test 

F=-  (Eq. 23) 

with a critical region F > F (a. M I -  N1, M2 - N2).  since e;el/u2 and 
e;ez/u2 are stochastically independent, X2-distributed, random variables 
with the respective degrees of freedom. 

If the F-test shows that the variances are not equal, then the t-test (Eq. 
22) should not be used. For such cases, the Ho-hypothesis can be tested 
using t.he following statistic (see Appendix 1: 

e;ez 

The w-statistic is approximated by a t-distribution with degrees of 
freedom, DF, given by2: 

where: 

The critical region ( H o  rejection region) is I w I > t ( a / 2 ,  DF).  A lOO(1- 
a)-percent confidence interval for the drug input rate at time t = to is: 

This treatment dealt with a statistical analysis of the rate of drug input. 

Figure 2-Response curves A ,  B, and C from which the  simulated Data 
Sets 4,5 ,  and 6, respectively, are derived by adding 5% random, nor- 
mally distributed error. Curves A and B haue widely different inputs; 
curves A and C haue the same input (Table I ) .  

However, the extent of drug input given by: 

can be treated similarly byreplacing f m ( t )  with A,(t) in the respective 
equations and redefining T ,  (Eq. 19) as: 

The analysis was based on the ordinary least-squares Gauss-Markov 
statistical model. It is extended readily by standard means (7) to the 
generalized linear regression model involving correlated and/or heter- 
oscedatic errors. The Gauss-Markov statistical model assumes no error 
in the independent variables, which is not true in thC present case. 
However, the independent variables are stochastically independent 
random variables that do not depend on the p parameters, so the above 
estimation, testing, and prediction still apply. Only two aspects of the 
analysis are affected ( a )  the probability in the t -  and F-tests is not exact 
but only approximate, and ( b )  the power o f  the tests is different. The 
effect of these modifications becomes smaller the more accurately the 
unit impulse response is determined. 

EXPERIMENTAL 

The rate and the cumulative amount of input were determined by the 
least-squares deconvolution method presented previously (4). The data 
used for the demonstration of the proposed approach were generated 
from an arbitrarily chosen linear model with a'twc-exponential unit im- 
pulse response and a first-order input (Table I). Random, normally dis- 

Figure 1-Inadequacy of a model-dependent approach of input esti- 
mation. Examples are of two iurtually superimposed curves (f i ts  1 and 
2rn Table I V )  fitted to Data Set 6 Curves A and B are the inputs cal- 
culated from the tUJ<J f i t ted curves. The  broken curve is the  true 
input. 

Figure S-Least-squares &convolution o f  Data Sets 1 and 4. A two- 
erDonentia1 exDression (Table 111) adeauatelv describes the impulse 
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Table 11-Data Used in Simulations 

Unit Impulse Response First-Order Input Response 
Concentration Concentration 

Data Data Data Data Data Data 
Time Set 1 Set 2 Set 3 Time Set 4 Set 5 Set 6 

0.01 
0.05 
0.07 
0.10 
0.15 
0.20 
0.25 
0.30 
0.40 
0.60 
0.80 
1 .oo 
1.20 
1.40 
1.60 
2.00 

1.89 
1.82 
1.75 
1.47 
1.46 
1.15 
1.24 
0.977 
0.873 
0.603 
0.468 
0.413 
0.333 
0.233 

8.42 
8.21 
6.99 
6.76 

1.79 
1.79 

0.00482 
0.0431 
0.118 
0.227 
0.366 
0.529 
0.710 
0.902 

0.0402 
0.352 
0.895 

0.0467 
0.343 
0.891 

0.0407 
0.331 
0.826 1.52 

1.43 
1.06 
1.04 
0.812 
0.714 
0.519 

1.27 
1.67 
1.77 
1.99 

1.25 
1.54 
1.88 
1.96 

1.25 
1.42 
1.34 

.. . 

5.59 
4.97 
4.49 1.26 

0.938 
0.787 
0.640 
0.479 
0.389 
0.313 
0.290 
0.237 
0.214 

4.40 
3.54 

1.64 
1.58 

1.74 
1.10 
1.29 
1.47 

1.57 
1.42 
1.39 
1.11 

. .~ 

1.95 
1.32 
0.926 

~ ~~~ 

0.270 
0.130 
0.0753 
0.0389 

~ ~. 

1.53 
1.22 
1.18 
0.916 

1.63 
1.77 
1.88 
1.96 
2.00 

0.562 
0.385 
0.230 
0.112 

1.03 
0.999 
0.841 
0.847 

0.0157 
0.00997 
0.00303 

0.855 
0.845 
0.868 

0.200 
0.137 

a The data were generated from the equations in Table I, and random normally distributed noise was added. 

tributed noise was added to the exact concentration data at the 5% level, 
i.e., with an expected coefficient of variation of 5%, using a pseudo-ran- 
dom normal generator based on the polar method (8) (Table 11). To 
demonstrate the method, the unit impulse response parameters for Data 
Set 2 (Table I) were calculated by a nonlinear optimization technique 
so that Data Sets 4 and 5 (having different input) would not differ sig- 
nificantly. The parameters for Data Set 6 were chosen for the same reason 
so that Data Sets 4 and 6 would differ significantly but would have the 
same input (Tables I and 11). The 16 sampling times for Data Sets 4-6 
were chosen according to a Tschebyscheff sampling (Eq. 20 in Ref. 4) to 
avoid the “Runge effect” occurring in some linear regressions with fairly 
equally spaced sampling points. 

The data matrix for the linear regression was generated from the 
simulated data as discussed previously (4). The matrix was executed 
stepwise with the BMDP-77 linear regression program P9R with a 
zero-intercept option and the option METHOD = NONE resulting in 
double-precision computations (9). The regression subsets were chosen 
on the basis of Mallow’s criterion (10). 

None of the BMDP linear regression programs provides output of the 
unscaled variance-covariance matrix required in the statistical compu- 
tations. Therefore, a program was written to assemble the cross-product 
matrix and invert it using a Cholesky decomposition. A subroutine was 
written in FORTRAN IV to calculate and compare the rate and the cu- 
mulative amount of input of two inputs. The routine tests for hetero- 
scedatic errors (Eq. 23) and chooses the appropriate type of statistic (Eq. 
22 or 24) to calculate the significance of the input difference for various 
times. The a-values for the t-statistic were calculated according to the 
algorithm presented by Hill (11). The n-values for the F-statistic were 
calculated according to algorithms 26.6.15 and 26.2.17 reported in the 

literature (12). The parameters in Tables I11 and IV were obtained by 
nonlinear regression using the interactive program FUNFIT (13). All 
drawings were done by a penplotter3 driven by a compute+ using a 
software package written by the author. 

RESULTS AND DISCUSSION 

Simulated Model-Data Sets 1-3 (Tables I and 11) can be considered 
to simulate, in the classical linear compartmental sense, intravenous bolus 
data normalized with respect to the dose for three subjects showing 
two-compartmental pharmacokinetic behavior with respect to a given 
drug. Data Sets 4-6 (Tables I and 11) can be considered similarly as 
simulated first-order absorption blood concentration data adjusted for 
a possible lag time for the three subjects. 

Comparison of Model-Dependent and Model-Independent Ap- 
proaches-It is often impossible to administer a drug intravenously. It 
is of interest to see how accurately the drug input can be determined by 
a model-dependent approach from absorption blood level data alone, 
without knowledge of the system’s response to intravenous administra-, 
tion of the drug. Data Sets 4-6 are generated from the convolution of 
a1 exp(X1t) + 0 2  exp(X2t) and kK exp(-kt). The three data sets are based 
on: 

c ( t )  = kK [F (eAl t  - e - k f )  
i + k  

+L - e - b f )  XI, X p  < 0 (Eq. 30) 
Xz + k 1 

where K corresponds to FD ( F  = fraction of dose D available) and k 
corresponds to k,  (the first-order absorption rate constant) in classical 
linear compartmental modeling. This equation was fitted several times 
to Data Set 6 using the FUNFIT program (13) with the initial parameter 
estimates randomly chosen in a feasible parameter space. It is evident 
(Table IV and Fig. 1) that the parameters for the rate, k ,  and the extent, 
K, of input describe the input inadequately, even though the correct 
model is fitted to the data, the fits are excellent (Table IV and Fig. l), and 
the data are as accurate as can be expected in a pharmacokinetic exper- 
iment. The input is determined poorly primarily because the parameters 
al,  a2, XI, and XZ from the unit impulse response a1 exp(X1t) t a2 exp(X2t) 
(the characteristic response) are free to take nearly any values in the 

I- 
2 n z 

.5 u 
0 

0. 

0 
0 0.5 1.0 1.5 2.0 

I- 
2 
3 
0 
E a Table 111-Least-Squares Unit Impulse Response Parameters 

Used in Deconvolutions 

Data Set a1 a2 XI A2 

1 1.1055 0.88427 -3.7725 -0.91283 
2 1.3170 7.5800 -9.0096 -2.1257 
3 0.94748 0.99355 -3.3894 -3.2941 

TIME 
Figure 4-Least-squares deconvolution of Data Sets 2 and 5.  A two- 
exponential expression (Table I I I )  adequately describes the impulse 
response data (+I.  The input function E9. 1 is estimated subsequently 
by fitting E9 .3  to the response data (0) by multiple linear regression. 
The continuously increasing curve is the calculated input amount 
(Table V). The broken curve is the exact input. 

Tektronix 4662. 
IBM 370. 

Journal of Pharmaceutical Sciences I 321 
Vol. 69, No. 3, March 7980 



Table IV-Estimates of the Input f( t )  = obtained in  a Model-Dependent Approach by Fitting Eq. 30 to Data Set 6 

Fit K k 01 a7 A1 A7 RSS x 1020 

1 0.170 3.31 10.8 6.10 -2.08 -1.13 1.0659 
2 11.5 1.46 0.491 0.0797 -3.70 -3.64 1.0758 
3 1.85 1.46 3.05 0.500 -3.69 -3.70 1.0758 
4 0.233 3.65 9.39 1.85 -1.55 -1.18 1.0733 
5 3.17 1.46 1.08 0.992 -3.70 -3.68 1.0758 
6b 1.04 3.69 0 2.50 0 -1.46 1.0758 
True values 3.0 1.5 1 1 -4 -3 

Residual sum of squares. * The parameters a1 and XI were fixed as zero in the fitting procedure corresponding to a one-compartment model. 

curve-fitting procedure at  the expense of k and K. Furthermore, the 
nonlinear parameters are not unique due to the presence of multiple 
minima of the residual sum of the squares function (13). (The six f i ts  in 
Table IV represent different local minima.) 

The input could have been determined more accurately if the unit 
impulse response parameters had been determined first from an intra- 
venous administration and then used as constants in the fitting of Eq. 
30. However, this approach has the disadvantage of being model de- 
pendent since it assumes a first-order input f ( t )  = kK exp(-kt). Since 
many variables affect the input uia the GI route (gastric emptying, GI 
motility, pH, blood flow, etc. ), it may seem unreasonable that the input 
is described in such a smooth, functional form. The present least-squares 
deconvolution approach is more general. The input is approximated by 
a polynomial. As such, it is more flexible and can adapt to whatever 
fluctuations or functional form the input may have. Furthermore, the 
input is determined by linear rather than nonlinear regression, so it is 
easier to apply computationally (e.g., no initial parameter estimates are 
required). The problem with multiple minima is eliminated, and the 
approach is more suitable for a statistical analysis of the input. 

The present method requires the unit impulse response parameters 
to be determined by nonlinear regression. However, the nonuniqueness 
of these parameters and their actual values as such have no influence on 
the accuracy of the input determination. The input is not calculated from 
the parameters individually but collectively in the way that together they 
represent the unit impulse response. In estimating these parameters from 
data from an intravenous bolus or intravenous infusion administration, 
two or more sets of widely different parameters may be obtained that give 
nearly superimposed curves as in Fig. 1 (Table IV). However, contrary 
to a model-dependent approach, the individual parameter values are 
irrelevant. The important consideration is how well the curve fits the data. 
There are several methods for automatically handling this curve-fitting 
problem (14, 15). 

Deficiencies in Using Cmax, t,.,, and A UC in Bioavailability 
Testing-Data Sets 4,5, and 6 are generated from Fig. 2 curves A, B, and 
C, respectively, by adding 5% normally distributed noise to the exact 
concentration data (Table 11). Curves A and B are very close, but the rate 
and the extent of input resulting in these curves differ substantially 
(Table I; A: k = 1.5, K = 3.0; B: k = 1.0, K = 1.0). Curves A and C differ 
widely, but they result from the same input (Table I; k = 1.5, K = 3.0). 
A comparison of the extent and the rate of input for Data Sets 4 and 5 

I- 
3 

2.0 - 
u. 
0 
I- z 

z 
1.0 2 

a 

0 
0 0.5 1 .o 1.5 2.0 

TIME 
Figure 5-Least-squares deconvolution of Data Sets 3 and 6. A two- 
exponential expression (Table 111) adequately describes the impulse 
response data (+). The input function Eq. I is estimated subsequently 
b.y fitting Eq. 3 to the response data ( 0 )  by multiple linear regression. 
The continuously increasing curue is the calculated input amount 
(Table V ) .  The broken cuwe is the exact input. 

(A and B, Fig. 2) on the basis of AUC, t,,, and C,, will not show a 
significant difference in their input. Furthermore, a comparison of Data 
Sets 4 and 6 (A and C, Fig. 2) by AUC, t,,, and C, is likely to show a 
significant difference in both the rate and the extent of input when, in 
fact, there is no difference. 

Because AUC, t,,., and C,,, depend both on the input and the re- 
sponse properties of the system, they can be misleading measures of 
bioavailability if the comparison is not done within subjects, i.e., for a 
constant unit impulse response. The deconvolution approach does not 
have this disadvantage. The response properties of the system are de- 
convoluted from the measured response to give a pure measure of the rate 
and the extent of input. 

Deconvolution Approach-Deconvolution of Data Sets 4,5, and 6 
(corresponding to A, B, and C in Fig. 2) is done (Figs. 3,4, and 5, respec- 
tively) using the responses measured for the three systems from a bolus 
input (Data Sets 1, 2, and 3, re~pectively)~. There is excellent agreement 
between the exact input and that calculated by deconvolution (Figs. 3-5). 
The regression function, Eq. 3, fits Data Sets 4-6 well. A Durbin-Watson 
analysis (16) and a runs test (17) show no systematic deviations among 
the residuals. The Tschebyscheff sampling strategy for Data Sets 4-6 
appears to give a more stable behavior for the fitted curve (Q. 3) and the 
calculated input for an increase in N (Eqs. 1 and 3) than the sampling 
scheme used previously (4). 

Statistical Comparison of Input-The input rate calculated from 
Data Sets 1 and 4 and 3 and 6 (A and B, respectively, Fig. 6) does not 
appear to differ significantly throughout the input period t = 0-2. The 
differential confidence profile (curve C, Fig. 6) is largest in the initial 
input phase but shows no significant [100(1- a) < 951 difference in the 
input rate. The same is the case in comparing the cumulative input 
amount (Fig. 7). The input rates calculated from Data Sets 2 and 5 and 
3 and 6 (A and B, respectively, Fig. 8) differ significantly in most of the 
input period. The respective cumulative input amounts differ signifi- 
cantly during the entire input period (Fig. 9). The input calculated from 
Data Sets 1 and 4 and 2 and 5 shows the same general behavior as the 
input calculated from Data Sets 2 and 5 and 3 and 6 (Figs. 10 and 11). 

The method proposed performs satisfactorily. The inputs are well 
determined6, and the method properly differentiates between the input 
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I 

'40 9 c 
c 

20 

1 .  . . b .  I . , , . 3 
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0 0.5 1.0 1.5 2.0 
TIME 

Figure 6-Differential confidence profile ( C )  for the input rate cal- 
culated by least-squares deconuolution from Data Sets 3 and 6 ( A )  and 
1 and 4 (B) .  

6 An infusion input also could have been used to obtain the unit impulse response 
parameters. 

6 The input might not have been approximated so well if the analysis had been 
performed using data extending substantially beyond the absorption phase. 
However, a beginnink oscillatory behavior around zero off(t) in the postabsorption 
phase would result, indicating that the fitting is extended too far. 
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Table V-Input Rate Estimated by the Least-Squares 
Deconvolution Method, 0 I t I 2 

Data Sets 
~~ 

1 and 4 
2 and 5 
3 and 6 

f(t) = 4.35 - 5.37t + 2.43t2 - 0.403t3 
f(t) = 0.937 - 0.754t + 0.184t2 
f(t) = 4.81 - 7.32t + 4.45t2 - 0.988t3 

for the similar Data Sets 4 and 5. It also shows no significant difference 
between the widely different Data Sets 4 and 6 having the same input. 
However, the statistics appear rather sensitive (Figs. 6 and 7), as expected, 
since they are based on normality assumptions. Therefore, it would be 
appropriate to choose a more conservative hypothesis testing such as: 

against: 

(Eq. 33) 

where D, the differential index, is chosen appropriately. For example, 
with the differential index equal to 25, the hypothesis that the rate or 
cumulative amount of input differs by more than 25% could then be tested 
at various times by a simple extension of the present method. This ap- 
proach seems to be more rational considering the large intersubject 
variations observed in the pharmacological response for many drugs. The 
application of the method to analyze real pharmacokinetic data is in 
progress. 

APPENDIX 

Several statistics have been proposed to test the equality of means for 
normal populations with unequal variances (18-21). Monte Carlo sim- 
ulation studies comparing several of these statistics (21) indicate that 
the statistic proposed by Welch (19) is the moat robust and appropriate 
for small'samples. 

This statistic can be stated for a two population problem in the fol- 
lowing simplified form: 

Theorem I: Let xij  be the j t h  observation from the ith population, 
where j = 1, . . . , ni and i = 1, 2. If xi,  are stochastically independent 
normal variates with expected values of p i  and the variance 4, then the 
probability distribution of the statistic: 

\n1 nzl 
is approximated by a t -distribution with degrees of freedom given by: 

A 

(Es. A2) 
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Figure 7-Differential confidence profile (C) for the cumulative input 
amount calculated by least-squares deconuolution from Data Sets 3 and 
6 ( A )  and 1 and 4 (8). 
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Figure 8-Differential confidence profile (C) for the input rate cal- 
culoted by least-squares deconuolution from Data Sets 2 and 5 ( A )  and 
3 and 6 (B) .  

where: 

(Eq. A3) 

n' 

j -  1 
sf = f; (IC;. - x i j ) z / ( n i  - 1) i = 1 ,2  (Eq. A4) 

and: 
ni 

1-1 
ri = ,x X i j l f l i  i = 1 , 2  (Es. A51 

This theorem deals with a differently formulated statistical problem 
than that of interest. However, the following extension of the theorem 
can be applied to test HO (Eq. 10) in the case of unequal population 
variances: 

Corollary I: Let 21 and z2 be stochastically independent random 
variables distributed N ( p 1 ,  a:) and N ( ~ l 2 ,  a:), respectively. Further, let 
s:1 and stz be stochastically independent random variables with mo- 
ment-generating functions: 

u 1 > 0  (b. A6) 

G 2 ( t )  = (1 - 2 $ t)-&' u2 > 0 

Then the probability distribution of the statistic: 

(Es. A7) 

is approximated by a t -distribution with degrees of freedom given by: 

TIME 
Figure 9-Differential confidence profile ( C )  for the cumulative input 
amount calculated by least-squares deconuolution from Data Sets 2 and 
5 ( A )  and 3 and 6 (B) .  
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Figure 10-Differential confidence profile ( C )  for the input rate cal- 
culated by least-squares deconuolution from Data Sets Band 5 ( A )  and 
1 and 4 ( B ) .  

where: 

(Eq. A101 

Proof: The random variables zi = Ti, i = 1,2 (Eq. A5), are distributed 
have the moment-gener- N(pi ,  a!/nj). The random variables sfi = 

ating functions: 

i = 1 , 2  (Eq. A l l )  

because (ni - 1)s;2/(r! is X2-distributed with ni - 1 degreesof freedom7. 
Equation A l l  uniquely defines the probability distribution of sEi. Letting 
ui = ni - 1 and replacing a f h i  by af lead to the corollary. 

The applicability of the corollary to test Ho (Eq. 10) is seen as follows. 
With: 

the moment-generating function of 

is: 

because ( M ,  - N,)&L/o; is X2-distributed with M ,  - N,,, degrees of 
freedom. Comparison of Eqs. A12 and A14 in relation to Corollary I leads 
to Eqs. 24-26. 

7 The moment-generating function of a X2-distributed variable with n degrees 
of freedom is (1 - 2t)-”I2. 

TIME 
Figure 1 I-Differential confidence profile ( C )  for the cumulatiue input 
amount calculated by least-squares deconuolution from Data Sets 2 and 
5 ( A )  and 1 and 4 ( B ) .  
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